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Fig. 1. We present a training method for neural fields that enables linear prefiltering with multiple reconstruction filters. At training time, the neural field
sees parameters of a single symmetric filter. At test time, we support prefiltering a variety of unseen filters (e.g., Box or Lanczos). Here, we show neural fields
trained on an image (with bottom-right insets of frequency spectrum) and signed distance function using Gaussian filters, with generalization on Box and
Lanczos filters. Images from Adobe FiveK; © original photographers/Adobe. Mesh models from the Stanford 3D Scanning Repository; © Stanford Computer

Graphics Laboratory. (Project page: https://myaldiz.info/assets/spnf/)

Neural fields excel at representing continuous visual signals but typically op-
erate at a single, fixed resolution. We present a simple yet powerful method
to optimize neural fields that can be prefiltered in a single forward pass. Key
innovations and features include: (1) We perform convolutional filtering in
the input domain by analytically scaling Fourier feature embeddings with
the filter’s frequency response. (2) This closed-form modulation generalizes
beyond Gaussian filtering and supports other parametric filters (Box and
Lanczos) that are unseen at training time. (3) We train the neural field using
single-sample Monte Carlo estimates of the filtered signal. Our method is
fast during both training and inference, and imposes no additional con-
straints on the network architecture. We show quantitative and qualitative
improvements over existing methods for neural-field filtering.
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1 Introduction

Neural fields are now widely adopted in visual computing [Xie et al.
2022]. They are used as continuous functions that map coordinates
from an input domain (e.g., pixel locations) to the corresponding
signal values (e.g., radiance). Generally, they provide point-wise es-
timates of the signal. As such, naively upsampling or downsampling
the neural field produces sampling artifacts, preventing applications
such as mipmapping. Previous works [Fathony et al. 2020; Lindell
et al. 2022; Mujkanovic et al. 2024] aim to address the demand for
resolution-aware neural fields. These methods impose significant
restrictions on their network architectures, and often are restricted
to a specific type of filter like Gaussian. In contrast, many graphics
applications, require alternative filters that trade between sharp-
ness and ringing. We propose a method for fitting neural fields that
enables accurate filtering with a variety of low-pass symmetric re-
construction kernels, while imposing few constraints on the neural
network architecture. Given the parameters of a filter and a spatial
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coordinate, our network predicts filtered signal values in a single
evaluation (Fig. 1).

Our key idea is to integrate the Fourier feature encoding [Tancik
et al. 2020] and derive an analytical formula to modify the coeffi-
cients. We show that by supervising the network with one type of
low-pass filter (e.g., Gaussian), it naturally generalizes to different
types of low-pass filters (e.g., Box or Lanczos). We estimate the fil-
tered signal and train the network with a Monte Carlo estimator of
the convolution.

We demonstrate our method for prefiltering 2D images and 3D
signed distance functions. Since we do not impose any restriction on
the network architecture apart from the Fourier feature encoding,
we achieve significantly higher quality results than prior work [Mu-
jkanovic et al. 2024]. Furthermore, our Monte Carlo estimator only
requires a single sample from the convolution filter; hence it in-
duces little performance cost during training even when the signal
is expensive to evaluate.

In summary, our contributions are:

(1) An analytical prefiltering approach for neural fields using
Fourier feature encoding,

(2) A training regime for prefiltered neural fields that gener-
alizes to a variety of linear and symmetric convolutional
filters.

2 Related Work

Multi-scale representations. Computer graphics and vision meth-
ods often rely on data structures (e.g., mipmapping) that represent
a signal at multiple scales [Williams 1983; Witkin 1987] to avoid
expensive postfiltering. The multi-scale representations can be use-
ful for texture filtering [Greene and Heckbert 1986; Heckbert 1989;
Williams 1983], image processing [Adelson et al. 1984; Lowe 2004],
level of detail [Hoppe 1996], and multi-resolution editing of geom-
etry [Zorin et al. 1997]. Our work shares the same motivation as
early texture filtering works. Post-filtering neural fields requires
approximating the filtering integral through either a) cubature dis-
cretization; which is both memory and compute expensive or b)
Monte Carlo sampling, which results in excessive noise (see Fig. 2)
We focus on building a multi-scale representation of a single-pass
coordinate neural network [Song et al. 2015] for a given filtering
kernel.

Neural fields. Neural fields compactly represent continuous sig-
nals using multilayer perceptrons conditioned on spatial coordi-
nates [Xie et al. 2022]. Their versatility makes them appealing for
representing images [Belhe et al. 2023; Song et al. 2015], geome-
try [Park et al. 2019; Sivaram et al. 2024], light fields [Sitzmann et al.
2021], radiance fields [Mildenhall et al. 2021], and spatially varying
reflectance [Bi et al. 2020; Rainer et al. 2019].

Input embeddings. Directly mapping coordinates to the output
using a neural network can fail to represent high-frequency details
due to the spectral bias of multilayer perceptrons [Rahaman et al.
2019]. To alleviate this, modern approaches often map spatial coor-
dinates through diverse activations as embeddings (e.g., Gaussian,
sine) [Rahimi and Recht 2007; Stanley 2007; Vaswani et al. 2017]. In
this work, we focus on the Fourier feature mapping introduced by
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Fig. 2. Method Overview. Our method rests on two key ideas: (i) using
the analytic Fourier transform (¥) of a symmetric linear filtering kernel to
modulate Fourier-feature embeddings, and (ii) using single-sample Monte
Carlo (1 MC) estimates of the filtered signal for supervision. A neural field
trained with one filter type girain, generalizes to unseen filters giest. Images
from Adobe FiveK; © original photographers/Adobe.

Tancik et al. [2020], which encodes input coordinates using sines
and cosines at multiple frequencies. We show that this representa-
tion enables the derivation of closed-form expressions for modifying
feature weightings in accordance with a given filter kernel, leading
to significant improvements in filtering accuracy.

Scale-aware neural rendering. Mip-NeRF [Barron et al. 2021] in-
troduced conical ray integration to reduce aliasing via scale-aware
positional encodings. Zip-NeRF [Barron et al. 2023], Tri-MipRF [Hu
et al. 2023], and Rip-NeRF [Liu et al. 2024] extend this idea using
hierarchical grids, mipmaps, and directional ripmaps. These meth-
ods optimize a photometric loss on down-sampled training images.
They focus on anti-aliasing in radiance fields, but lack extensive
analysis on whether internal signals such as volumetric density are
correctly filtered, nor can they change the filtering at test-time.

Learned multi-scale representations. Song et al. [2015] represent
a multilayer-perceptron-based mipmap using coordinates (x, y, [)
where [ is a continuous mipmapping level. Recently, several neural
multi-scale representations are proposed [Fathony et al. 2020; Lin-
dell et al. 2022; Saragadam et al. 2022; Shekarforoush et al. 2022; Yang
et al. 2022]. However, they typically put significant constraints on
the network architectures, and can only handle limited anisotropy.
Beyond multi-scale architectures, Xu et al. [2022] directly learn
operators that act on the neural fields. Nsampi et al. [2023] derive
continuous convolutions for neural fields by convolving repeated
derivatives of the kernel with repeated antiderivatives of the sig-
nal, which is exact for piecewise-polynomial kernels [Nsampi et al.
2023]. Lindell et al. [2022] directly modify the network architecture
to handle box-filtering and Gaussian-filtering but their method is
not continuous in filter space. Closest to our work, NGSSF [Mu-
jkanovic et al. 2024] learns an anisotropic Gaussian scale-space via
a scale-conditioned MLP, but remains restricted to Gaussian filters
and relies on Lipschitz regularization plus a calibration stage for
continuous smoothing. In contrast, our approach uses frequency-
aware Fourier features and a single-sample Monte Carlo estimator



to achieve filter-agnostic and anisotropic prefiltering without fur-
ther architectural constraints, resulting in both greater flexibility
and superior reconstruction quality.

3 Background

Let x € R% be a d;-dimensional input coordinate, and consider a
continuous signal f : R% — R%, where d; and d, are typically
small (e.g., d; = 2, d, = 3 for RGB images, and d; =3, d, = 1fora
signed-distance field). A neural field approximates this signal:

Fo(x) ~ f(x), 1

where 0 are the learned parameters. To incorporate a filter K pa-
rameterized by a parameter X (e.g., a Gaussian kernel) the filtered
signal is defined as the following convolution:

fis(®) = (Ks % f)(x) = / Ks(x—x) ). (@)

Throughout this paper, we assume the spatial kernel K5 is sym-
metric, i.e., Ky (x) = Kx(—x). After Fourier transform, its frequency
response ¥ {Ks } (@) is therefore real and even, yielding zero phase
shift which simplifies our frequency representation (see Sec. 4.1).
In the anisotropic filter case, symmetry still holds, but magnitude
varies by direction (e.g., elliptical Gaussian).

Conventionally, filtering a signal can be done through Monte
Carlo estimation of the convolution integral [Hermosilla et al. 2018].
Naive Monte Carlo estimation for filtering neural fields suffers from
two standard drawbacks, (i) high variance and (ii) reliance on full
network evaluation for each Monte Carlo sample, making it expen-
sive. To address these limitations, we seek to prefilter neural fields
with a single compact model that approximates the filtered signal:

Frs(x:0) = frs(x). (3

Our goal is to learn the neural field such that it produces filtered
output in a single forward pass and is continuous in the parameter
space 2.

A common way to avoid per-query integration at inference is
to relocate the convolution to the input features, i.e., convolve the
embedding once and then feed it to the network. Prior works [Barron
et al. 2021; Liu et al. 2024; Wu et al. 2024] learn integrated input
feature embeddings (e.g., positional encoding [Vaswani et al. 2017],
hashgrids, etc.) to filter neural fields:

Yrx(x) = / Ks (x -x)y (x')dx'. (4)

Here, y’ is a feature embedding at original resolution and y(-, %) is
the convolved embedding. These features are then passed through
the network (MLP) to approximate the filtered signal in one pass:

Fi5(x;0) = MLPy (yk 5 (x)). (5

We build on the feature-space view in Equations (4)-(5): we choose
an embedding whose convolution with Ky, is available in closed
form, enabling a single-pass filtered output. We develop this idea
further in Section 4.1, showing how it generalizes beyond a single
kernel to other symmetric filter families with continuous control
over 2.

Spectral Prefiltering of Neural Fields « 3

Gaussian

Est.

Increasing Kernel Width

GT

0.0 1.0

Est.
GT

Increasing Kernel Width

0.0 1.0

Lanczos

Est.

Increasing Kernel Width

0.0 1.0

Fig. 3. 1D Example. Given a discretely sampled 1D signal and a finite set of
uniformly sampled Gaussian kernels, we train a neural field to encode the
continuous scale space of the signal (top). By modulating the Fourier feature
embeddings as per § 4.1, we prefilter the neural field with Box (middle) and
Lanczos (bottom) filters with no additional supervision.

4 Method

Given a symmetric kernel Ky, our method: (i) prefilters Fourier fea-
tures that are subsequently used by a neural network to predict the
filtered signal; (ii) trains on a single-sample Monte Carlo estimate
of (Kx * f) (Sec. 4.2). Implementation details are provided in Sec-
tion 4.3. At test time, the same model supports arbitrary covariance
¥ (isotropic or anisotropic) and previously unseen filters, such as
Box and Lanczos, in a single forward pass (see Fig. 2).

4.1 Prefiltering Fourier Features

Our goal is to use a feature encoding y’ (x) with the following two
properties:

(1) Closed-form filtering. Convolution of y’ with a given
filter can be computed analytically, avoiding the runtime
overhead and accuracy tradeoffs of Monte Carlo (MC) or
quadrature-based methods.

(2) Spectral-bias control. The proposed encoding ensures ro-
bustness to MC noise during training and provides a direct
mechanism to tune the MLP’s sensitivity to different fre-
quency bands.

Random Fourier feature embeddings meet these requirements:

m

Y (x) = [a,— cos(2 b x), a; Sin(2”b;‘rx)]i=1’ ©)
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where the choice of frequencies {b;} and amplitudes {a;} controls
the spectral bias [Tancik et al. 2020]. In this work, we extend this
idea by deriving an exact, filter-dependent modulation of {a;}, giv-
ing precise control over the network-output’s frequency spectrum.
Consistent with Equation (4) in Section 3, we instantiate y(x,X) by
exactly convolving this embedding with K.

In Equation (6), each entry g; of y’(x) is a sinusoid at frequency
b;, whose spectrum is a pair of impulses at +b;. By the convolution
theorem,

FAKs *9i} = FA{Ks} - F{gi}- ™
For a symmetric kernel, ¥ {Kx} is real and even, so multiplying the

two impulses at +b; by F{Kx}(b;) only rescales the amplitude (no
phase change). Inverting the transform gives:

(Kz # gi)(x) = F{Ks}(bi) gi(x). ®

Thus feature-space convolution amounts to scaling each cosine/sine
pair at b; by the filter’s magnitude at that frequency. We set the
Fourier-feature amplitudes to the kernel’s magnitude at each fre-
quency,

ai(Kz) = F{Ks}(by). ©)

Using Equation (6) with a; = a;(Ky) yields an embedding whose
convolution with Ky is exact. When supervised with an estimate
of the filtered signal, the network learns to condition on this pre-
filtered embedding so that a single forward pass outputs (Kx * f) (x).
Matching a; to F{Kx}(b;) provides direct spectral-bias control.

Kernel-specific magnitudes. We now list the closed-form a;(Ks)

used in this paper. Given that ¥ € R™" is a symmetric positive-definite

covariance matrix, we extend 1D kernels (Gaussian, Box, Lanczos)
to nD by evaluating them at the Mahalanobis distance ||x||z =
VxT2~1x, yielding anisotropic nD filters. We provide full deriva-
tions and constants in the supplemental material. For a Gaussian
kernel:

a;(Ks) = exp (—27‘[21)?21),') . (10)

For an n-dimensional Box kernel, where J,/, is the Bessel function
and T is the Gamma function:

Mz + 1) ]n/z(zm/blTZb,») ;
/2 (m)n/z : (11)

For a Lanczos kernel, let p > 0 denote the Lanczos order (we use
p to avoid a clash with the Fourier—feature weights a;), The Fourier
transform of the nD Lanczos kernel is then:

b (P _ rsby min( L
a;(Kz) = . max(mm( 2 bi >b;, mln(l,p)), 0). (12)

The constant z, is a dimension n dependent normalization factor
for the Lanczos kernel. Finally, following Equation (5) in Section 3,
we pass the convolved features through the network to approximate
the filtered signal.

As an illustration, consider the toy example in Fig. 3, where we en-
code the scale-space of a 1D signal in a neural field. We analytically
integrate the Fourier features for a given filtering kernel, which acts
as proxy for prefiltering the signal. We observe that using the pro-
posed feature encoding modulation (Eq. (9)), enables prefiltering the

a;(Ksz) =

neural field with additional filters without fine-tuning or re-training
the MLP network.

4.2 Monte Carlo-Based Training

The previous section defines a deterministic, filter-conditioned en-
coding yk 5 (x). In our training scheme, we optimize only the MLP
parameters 6 to map yxx(x) to the filtered signal; the encoding
itself is fixed given (x, K, X).

Most scale-aware neural-field methods avoid explicit or approxi-
mated convolution of the ground truth signal by baking the filter,
either directly into the dataset (via precomputation) or by incorpo-
rating the filter into the network architecture. While these methods
show good results, they nonetheless come with limitations as dis-
cussed in Section 2.

Objective and estimator. An unbiased estimate of the exact convo-
lution can be given via Monte Carlo estimation; we draw N samples
{x}} from a probability distribution p(- | x) centered at the point of
convolution x,

[KZ(X x')
x'~p<-|x> p(x’'[x)

Ks(x— x) .
_Z‘ e x). X ~pC1x). (19

fkz(x) = fx )] (13)

22

We choose the density p to be proportional to |Kx|. However, a low-
variance estimate given by dense multi-sampling is prohibitively
slow. We therefore train with a single Monte Carlo sample (N=1) at
each iteration.

Sampling procedure. During training, we uniformly sample a
batch of coordinates x from the valid signal area, and we sample
positive semidefinite covariances X by drawing principal variances
uniformly in log-space with a random rotation.

(i) Given a filter (Gaussian, Box, Lanczos), we first normalize the
filter |Ky|, treat it as a distribution and sample x’. Distributions
of Gaussian and Box filters yield normal and uniform sampling
respectively, which is easy to sample. For Lanczos filter, we use
rejection sampling, and cache those samples. During training and
evaluation of Lanczos filter, we draw cached samples at random and
stretch them according to the covariance.

(ii) Next, we sample the corresponding signal at f(x") as a MC
estimate of the signal. Our single-sample Monte Carlo training is
similar to the coordinate perturbation introduced by Ling et al.
[2025] (See Eq. (15)). We also perturb the sampling coordinate, but
unlike their method, we modulate the encoding according to the
kernel K.

4.3 Implementation Details

We use standard settings for stable single-sample training.

Optimizer and schedule. We use Adam [Kingma and Ba 2014] for
its robustness to noise. We found that an exponential learning-rate
decay is critical: larger early steps drive progress despite target noise,
while smaller later steps average out variance. In our experiments,
adding exponential decay to 1e—3 times of the original learning rate
improved PSNR (e.g., +2.19 dB on Alien) and reduced speckle. After



sweeping learning rates from 5x 107> to 5x 107!, stochastic gradient
descent (with/without momentum) either converged to poor minima
or diverged, so we adopt Adam with learning rate 5 X 10™* with
batch size 100k for images and 200k for SDF by default.

Loss. We minimize the minibatch MSE between the MLP on the
prefiltered encoding and a single-sample MC target:

Ks(x-x') ,
MLPolyis(x)) = — ey F&|
(x,K,ZZ;GB“ olrz(0) p(x |X,K2)fx 2 (15)

X'~ p(-|x Kz) o |Ks].

. 1 2
L=—
|8

Because the MC target is unbiased for (K3 * f)(x), this MSE is an
unbiased objective. For datasets with heavy-tailed, high-dynamic-
range noise, one can instead explore objectives from Noise2Noise
that down-weight extreme outliers [Mansour and Heckel 2023].

Architecture details. Unless otherwise noted, we follow the config-
uration from NGSSF [Mujkanovic et al. 2024]: a 3-layer multi-layer
perceptron of width 1024 and (m=512) 1024 channel Fourier features.
We use a basis scale of 2000 for images and 40 for SDFs. The Fourier
basis scale should match the signal’s frequency distribution: if set
too small, the model is biased toward low frequencies (underfitting
high-frequency detail); if set too large, it over-emphasizes high-
frequency noise due to MC sampling. We found that our Fourier
feature prefiltering helps suppress the noise since it biases updates
towards low-frequency content.

5 Results

We first compare against prior methods under Gaussian smoothing
(Sec. 5.1). We then study generalization to other filter families, Box
and Lanczos (Sec. 5.2).

We evaluate on images and signed distance fields (SDFs). For im-
ages, we follow the NGSSF evaluation benchmark [Mujkanovic et al.
2024] on 100 high-resolution 2048 x 2048 Adobe FiveK images [By-
chkovsky et al. 2011]. We treat signals as periodic and evaluate
pixels whose convolution windows lie within the image boundaries.
We report PSNR (Peak Signal-to-Noise Ratio), SSIM [Wang et al.
2004], and LPIPS [Zhang et al. 2018].

For SDFs, following the NGSSF benchmark [Mujkanovic et al.
2024] and training coordinate sampling, we voxelize meshes into
SDFs at 1024° during training and 256° at test time. We extend the
ground truth SDF values 1.2 times beyond the normalized coordi-
nates, calculate filtered fields, and again crop borders. We use the
Lucy, Dragon, Thai Statue, and Armadillo meshes from the Stanford
3D Scanning Repository (models courtesy of the © Stanford Com-
puter Graphics Laboratory). We report MSE (Mean Squared Error),
Chamfer distance [Fan et al. 2017], and IoU [Mescheder et al. 2019].

5.1 Gaussian Filtering

Image filtering. We report quantitative results for Gaussian smooth-
ing in Table 1 (isotropic) and Table 2 (anisotropic). In addition, the
first two rows (Gaussian) and first two columns (NGSSF and Trained
w/ Gaussian) of Figure 6 show qualitative comparisons. We include
additional qualitative results in the supplemental material.

In the isotropic setting, against the most relevant continuous-
scale baselines—NFC [Nsampi et al. 2023] and NGSSF [Mujkanovic
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et al. 2024]—our method improves PSNR at least by +4.9 to +13.4 dB
across scales. It also outperforms discrete-scale architectures (BA-
CON [Lindell et al. 2022], MINER [Saragadam et al. 2022], INSP [Xu
et al. 2022]) when filtering at varying scales. MINER gives higher
PSNR on the unfiltered signal only (6%=0; +2.96 dB), which reflects
differences in representation capacity rather than filtering behavior.

For anisotropic Gaussian smoothing, our method yields large,
consistent gains over all baselines (Table 2; see also the Gaussian
rows/columns in Figure 6). Quantitatively, we improve PSNR by
+14.5 dB over NGSSF [Mujkanovic et al. 2024] (49.33 vs. 34.82 dB),
and by +19.0/+25.2 dB over NFC [Nsampi et al. 2023]/PNF [Yang
et al. 2022] respectively, with corresponding LPIPS and SSIM also
best (e.g., LPIPS 0.054 vs. 0.069 for NGSSF; SSIM 0.991 vs. 0.940).

Among prior methods, NGSSF is the strongest baseline for Gauss-
ian filtering in both isotropic and anisotropic settings. However,
its calibration scheme does not perfectly match the ground-truth
filtering magnitude across scales and underfits frequency content
which is visible near edges of the filtered signal.

SDF smoothing. We present the quantitative results of isotropic
and anisotropic Gaussian filtering of SDFs in Tables 3 and 4 respec-
tively. Also the first row (Gaussian) of Figure 7 shows qualitative
SDF results.

Across isotropic kernels (Table 3), our method gives the best
overall geometry—lowest Chamfer distance and highest IoU—at
all non-zero blur levels. MINER reports the lowest MSE at o2 €
{0,107%,1073} and NFC has the lowest MSE at 0> =10"2, but both
either lack continuity in o2 or degrade geometry (higher Chamfer,
lower IoU). In contrast, our model remains continuous in filter space
and preserves geometry across scales. For anisotropic kernels (Ta-
ble 4), our method improves over NGSSF and NFC by large margins
on all metrics (e.g., MSE 2.2x107° vs. 2.8x1073 for NGSSF; Chamfer
3.6x1072 vs. 1.2x107; ToU 0.83 vs. 0.42), removing streaking and
floaters while matching the ground-truth shape more closely.

5.2 Filter Generalization

We test generalization across low-pass filter families, Gaussian, Box,
and Lanczos, under two training schemes: (i) training with a single
filter family and evaluating on the others, and (ii) training jointly
with multiple filter families, Gaussian, Box, and Lanczos, at each
iteration. (See also the 1D example in Fig. 3).

Baselines. Neural Field Convolutions (NFC) [Nsampi et al. 2023]
models a filter as a sparse set of Dirac impulses, interpolated through
a piecewise-polynomial approximation to the target kernel. This
construction yields continuity in isotropic and axis-aligned settings,
but for general anisotropic kernels, it requires re-optimizing Dirac
locations and weights for each covariance. Therefore, the represen-
tation is not continuous across anisotropic scale space. In practice,
following the prescribed guidelines, we use piecewise-linear kernels
only for 2D isotropic comparisons; for anisotropic cases, piecewise-
constant kernels are required because higher-order models fail to
optimize reliably. Even with substantial per-kernel tuning, represent-
ing non-polynomial filter families (e.g., Gaussian and Lanczos) and
highly anisotropic filters remain limited by the NFC construction
(see the optimized Dirac deltas in Fig. 6).
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Table 1. Image filtering with isotropic Gaussian kernels. We test our model across isotropic kernels by averaging metrics across 100 images on 4(+original signal)
different isotropic kernels. Indicated by o®-cont., the NGSSF [Mujkanovic et al. 2024] and NFC [Nsampi et al. 2023] baselines are the only other methods
that operate continuously in isotropic scale space. Other methods, namely BACON [Lindell et al. 2022], MINER [Saragadam et al. 2022], INSP [Xu et al.
2022], illustrate the tradeoff between changing the network architecture and filtering quality. Best and second best are bold and underlined. Our method
outperforms these alternatives on filtering with changing scales. While MINER yields marginally higher PSNR at representing the original signal, it lacks

continuous control over o2 scale space.

0% =0 o =10"*

Method o?-cont.

o? =103 % =102 % =10""1

PSNRT LPIPS| SSIMT PSNRT LPIPS| SSIMT PSNRT LPIPS| SSIMT PSNRT LPIPS| SSIMT PSNRT LPIPS| SSIMT

BACON [2022] X
MINER [2022] X
INSP [2022] X 30.57 0.454 0.770 30.14 0.420 0.838
NFC [2023] v 20.75 0.703 0.533 26.49 0.224 0.839
NGSSF [2024] Vv 33.85 0.305 0.854 35.05 0.207 0.942
Ours v

32.89 0.308 0.823 38.95 0.235 0.955 36.48 0.123 0.953 30.59 0.086 0.895 25.36 0.100 0.601
41.19 0.088 0.963 37.38 0.259 0.945 36.99 0.097 0.959 25.89 0.205 0.815 24.38 0.156 0.567

23.77 0.546 0.725 20.75 0.546 0.627 23.37 0.381 0.633
36.05 0.071 0.949 39.74 0.011 0.965 41.06 0.006 0.965
34.74 0.077 0.954 35.06 0.023 0.949 34.99 0.020 0.878

38.23 0.193 0.918 43.83 0.192 0.971 48.91 0.064 0.991 53.09 0.009 0.997 53.81 0.005 0.997

Table 2. Image filtering with anisotropic Gaussian kernels. We test our model
across anisotropic kernels by averaging metrics across 100 images on 100
different anisotropic kernels with varying scales and orientations. Best
scores are bold. We achieve greater accuracy on all metrics compared to
prior work while remaining continuous in filter space.

S-cont. PSNRT LPIPS| SSIMT

PNF [2022] X 24.15 0.571 0.704
NFC [2023] X 30.31 0.094  0.857
NGSSF [2024] v 34.82 0.069  0.940
Ours v 49.33 0.054 0.991

Neural Gaussian Scale-Space Fields (NGSSF) [Mujkanovic et al.
2024] learns a scale-conditioned MLP that is well suited to general
low-pass filtering. However, it does not provide an explicit control
to switch the type of smoothing at test time. To compare across fam-
ilies, we therefore recalibrate NGSSF’s encoding with a Monte Carlo
estimate of the filtered signal for the target family. While this calibra-
tion aligns the overall spectral shape, the nature of the smoothing
(e.g., Gaussian, Box, and Lanczos), it is not directly controllable and
residual estimation errors remain (see Fig. 6).

Results on images. We assess generalization for the image regres-
sion experiments quantitatively in Table 5 and qualitatively in Fig-
ure 6. For this task, frequency characteristics are most visible in the
frequency-domain insets (bottom right of each panel; see also Figs. 1
and 6). Single-family training already generalizes well to the other
families; joint training provides only marginal gains. The Lanczos
frequency response closely matches the reference spectrum with
or without Lanczos-specific training (See supplemental material for
more examples). However, errors in the Lanczos filter overall are
higher than those in the other filters.

Results on SDFs. We present generalization capabilities of our
model for SDFs in Figure 7. Our model matches overall smoothing
shape and characteristics of each filter, and achieves perceptually
convincing results. Fine-scale artifacts persist in some cases, which
we attribute to training with higher MC variance on SDFs. Impor-
tance sampling high-variance regions such as sharp surface changes

and better tuning Fourier basis scale to match signal frequency
characteristics (see Sec. 4.3) help mitigate these artifacts.

Summary. Across both images and SDFs, our model trained with
frequency-modulated features supports Gaussian, Box, and Lanczos
filtering with anisotropic covariances in single forward pass, without
architectural changes. Compared to NFC’s Dirac-impulse parame-
terization (capacity-limited and not continuous in anisotropic scale
space) and NGSSF’s Gaussian-specific design (recalibration needed
and no explicit kernel family control), our approach exposes the
frequency response directly in the input encoding, which enables
cross-family generalization and controllable smoothing at test time.

5.3 Ablations

In this section, we investigate design choices of our method and
ablate them to observe their effectiveness. For each of these ablations,
the model and the experiment parameters were the same as before.

Model parameters. To assess which components matter most for
(i) reconstructing the original signal, (ii) isotropic filtering, and (iii)
anisotropic filtering, we run ablations in Figure 4 by varying the
Fourier-feature (embedding) size, the MLP hidden width, and the net-
work depth. Although the model can reconstruct the original signal
with relatively small embeddings (e.g., NeRF uses m=10 [Mildenhall
et al. 2021]), the embedding size is the most sensitive factor for filter-
ing performance. Increasing hidden width also helps across all tests,
while increasing depth beyond three layers yields only marginal
gains. We perform a depth ablation with matched number of train-
able parameters (see supplemental Fig.), varying network depth, and
find that a three or four layer MLP yields the best reconstruction
quality.

Model components. We ablate three components on the Alien im-
age (Figure 5 and Table 6): (i) single-sample Monte Carlo supervision,
(ii) exact Fourier down-weighting of the input features via ¥ {Ky}
(Sec. 4.1), and (iii) lifting the Lipschitz constraint used by NGSSF.
MC alone yields only small gains in filtering quality (e.g., isotropic
PSNR 31.35 — 33.16). Exact Fourier down-weighting is effective only
when we train with MC: without MC it changes little, while with
MC it boosts filtering PSNR to 41.8-42.0 dB. Lifting the Lipschitz
constraint further improves results under MC (cf. rows 4—5 and
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Table 3. SDF filtering with isotropic Gaussian kernels. Metrics are averaged over Lucy, Dragon, Thai Statue, Armadillo SDFs. Columns correspond to o €
{0,107%,1073,107%}; 62=0 denotes unfiltered reconstruction. “a®-cont.” indicates continuity w.r.t. the scalar variance. Best and second best are bold and
underlined. MINER reports the lowest MSE at 2 € {0,107%,1073} and NFC at 62 =1072, whereas our method yields the best geometry—lowest Chamfer and

highest loU—at all non-zero blur levels while remaining continuous in .

at=0 o?=107""4 ot=10"% ot =1072

Method o?-cont.

MSE| Cham.| IoUT MSE| Cham.| IoUT  MSE| Cham.| IoUT MSE| Cham.| IoUT
BACON [2022] X 2.5e-3 1.3e-3 0.99 4.0e-3 2.2e-3 0.97 8.3e-2 1.5e-2 084 2.6e-4 4.9e-2 0.3
MINER [2022] X 1.6e-7 1.1e-3 0.98 3.3e-7 1.4e-3 0.98 4.1e-6 8.0e-3 092 1.8e-4 6.1e-2 0.52
INSP [2022] X 1.2e-1 1.3e-3 0.99 4.3e-2 4.4e-3 095 3.6e-2 1l.le-2 0.88 3.1e-2 3.7e-2 0.64
NFC [2023] v 3.7e-3 5.7e-3 0.89 2.5e-5 4.8e-3 092 1.4e-5 2.2¢-3 0.97 1.0e-5 2.3e-2 0.77
NGSSF [2024] v 8.3e-5 3.9e-3 0.94 6.0e-5 5.5e-3 0.92 6.5e-4 1.6e-2 0.83 1.le-2 1.3e-1 0.32
Ours v 1.6e-5 1.7e-3 0.98 1.le-5 1.2e-3 0.98 9.5¢-6 1.8e-3 0.98 1.8e-5 3.6e-3 0.95

Table 4. SDF filtering with anisotropic Gaussian kernels. Metrics are averaged
over covariances ¥ on 100 different anisotropic kernels with varying scales
and orientations. “X-cont.” indicates continuity over the full covariance. Best
scores are bold. Our method achieves greater accuracy on all metrics while
remaining continuous in filter space.

Y-cont. MSE| Cham.|] IoUT
NFC [2023] X 7.1e-2 4.6e-1 0.08
NGSSF [2024] v 2.8e-3 1.2e-1 042
Ours v 2.2e-5 3.6e-3 0.83
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Fig. 4. Sensitivity Analysis. We evaluate how Fourier-feature embedding size
and network architecture affect (1) reconstruction of the original signal, (2)
isotropic smoothing, and (3) anisotropic smoothing. Embedding Size. While
embedding size has relatively smaller effect on reconstructing the original
signal, the model benefits substantially from larger embeddings in both
isotropic and anisotropic smoothing tasks. Hidden Dimension. Increasing
the hidden-layer width consistently yields higher PSNR across all tests.
Network Depth. Adding more than three layers provides only marginal PSNR
gains, indicating diminishing returns beyond a depth of three. The bottom
row shows the PSNR range (highest minus lowest) observed over each
hyperparameter sweep, illustrating the relative sensitivities.

6—7). With all three enabled, the model achieves the best scores on
the original and filtered signals (32.54/43.40/43.60 dB PSNR with the
lowest LPIPS and highest SSIM).

Table 7. Effect of the number of MC samples. We conduct an image re-
gression experiment using lower-variance estimates of the filtered field,
averaged over 100 anisotropic test-time Gaussian kernels and evaluated
after 100,000 training iterations. We observe that, although increasing the
number of Monte Carlo samples substantially reduces the variance of the
signal estimate, this has a minimal impact on the overall quality of the
reconstructed result at convergence.

1MC 4MC 16MC 64MC 256 MC 1024 MC

PSNRT 43.64 4432 44.57 44.70 44.68 44.73

Activation function. We integrate our exact Fourier encoding with
a SIREN-style sine activation and achieve 43.43 dB PSNR on the
Alien image under anisotropic smoothing, nearly identical to the
43.40 dB of our ReLU model.

Using a single Monte Carlo sample. Table 7 shows that presenting
the network with a lower-variance estimate of the signal does not
significantly improve the results, which validates our choice of using
a single Monte Carlo sample.

6 Limitations

Training/Inference speed. Like all multilayer-perceptron-based
neural fields, our method incurs higher per-sample evaluation cost
compared to grid-based or other discrete representations (e.g., hash
grids or voxel grids). Compared to NGSSF, removing Lipschitz
bounds reduces the training computation by 38.5% (130ms to 80ms
forward + backward + optimization step). For inference time, our
method is as fast or faster than NGSSF (1.8s), BACON (1.6s), PNF
(5.7s), INSP (189.5s), NFC (63.9s). MINER (0.1s) remains faster at
inference due to its multiple sparse tiny MLPs (0.1s vs 1.8s). This per-
formance gap can limit deployment in real-time or latency-sensitive
applications.

Only Symmetric filters. Our method relies on the filter’s Fourier
transform being real and even. Asymmetric filters introduce phase
shifts that are not captured by our current encoding, so extending
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Table 5. Filter generalization. We train four versions of our image-regression model—one each with Gaussian, Box, and Lanczos filters, plus a “Multiple” model
trained on all three. At test time, we evaluate each model using Gaussian, Box, and Lanczos kernels. The results show that even models trained on single filters
generalize well to unseen filters, nearly matching the quality of training on all filters simultaneously.

.. . Gaussian Box Lanczos
Training Filter
PSNRT LPIPS| SSIMT PSNRT LPIPS| SSIMT PSNRT LPIPS| SSIMT
Multiple 43.82 0.128 0.969 40.22 0.111 0.963 39.21 0.104 0.963
Gaussian 44.71 0.127 0.972 40.23 0.111 0.962 37.33 0.106 0.955
Box 43.81 0.125 0.972 41.58 0.113  0.966 36.09 0.108  0.948
Lanczos 38.03 0.128 0.952 35.24 0.120 0.938 41.47 0.107 0.967

Table 6. Quantitative Ablation Study on Alien. We analyze the impact of having one Monte Carlo sample, removing the Lipschitz constraint, and using our
exact Fourier modulation. We observe that, while the Lipschitz-constrained MLP achieves better filtering without Monte Carlo, lifting it performs better once
single Monte Carlo sampling is enabled. The exact Fourier modulation improves results in all cases. When the three components are enabled, the method

achieves the best results in both original signal fitting and filtering.

Monte Lipschitz  Exact Original Anisotropic Isotropic

Carlo Lift Fourier psnrf LPIPS| SSIM] PSNRT LPIPS| SSIM] PSNR] LPIPS|  SSIM]
X X X 26.81 0.157 0.899 32.01 0.205 0957 3135 0.183 0.945
X Vv X 2930 0.046 0.946 2258 0.374 0.883 21.34 0.331 0.839
X X v 26.06 0.169 0.894 31.24 0.197 00953 30.56 0.172 0.941
v X X 2598 0.166 0.909 3238 0.405 0928 33.16 0.296 0.921
v Vv X 31.89 0.032 0.972 36.01 0350 0.933 37.14 0.183 0.934
v X v 27.01 0.127 0.928 42.00 0.185 0973 41.80 0.159 0.967
v v N4 32.54 0.025 0977 4340 0.180 0.974 43.60 0.150 0.970

to arbitrary non-symmetric kernels would require modeling and
compensating for phase information.

High-pass filter support. Our results only indicate performance on
low-pass filters. A high-pass filter such as difference-of-Gaussians
is readily feasible with our method as the filtered response can be
achieved as a linear combination of Gaussians with two different
scales. Since our method operates continuously in scale space, any
such parametric combination is supported. We leave the investiga-
tion of supporting arbitrary and asymmetric filters as future work.

Scope and applicability. In this work we evaluate only MLP-based
neural fields with ReLU and SIREN-like sinusoidal activations. Our
approach relies on continuous inputs and analytic frequency re-
sponses, and is therefore not directly applicable to grid-parameterized
methods (e.g., multi-resolution or voxel/tensor grids) without addi-
tional changes. Extending the method to such grids is outside the
scope of this paper.

Scope of analysis. We focus on the empirical evaluation of our
training scheme and its practical generalization to unseen filters.
A theoretical investigation into why Fourier-feature modulation
so effectively represents multi-scale signals, and establishing the
conditions under which it provably converges represent a promising
future direction.

7 Conclusion

We have presented a simple yet powerful framework for prefiltering
neural fields in the frequency domain by analytically modulating
Fourier—feature embeddings with a family of symmetric filter ker-
nels. By integrating a closed-form expression for the filter’s fre-
quency response into the first layer of a multi-layer perceptron and
supervising with single-sample Monte Carlo estimates, our method
supports continuous Gaussian, Box, and Lanczos filters, even those
unseen at training time, without imposing architectural constraints
or relying on precomputed multiscale datasets. Extensive experi-
ments on 2D images and 3D signed-distance fields demonstrate that
our approach delivers higher fidelity and generality than prior scale-
aware neural-field methods, while remaining memory-efficient and
straightforward to implement.
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Fig. 6. Comparisons against Neural Field Convolutions (NFC) [Nsampi et al. 2023] and Neural Gaussian Scale-Space Fields (NGSSF) [Mujkanovic et al.
2024] for image filtering across Gaussian, Box, and Lanczos kernels. Our model supports controllable smoothing across families and anisotropic covariances
in a single forward pass. NFC parameterizes filters with Dirac impulses; it is reliable for isotropic/mild kernels but is capacity-limited for anisotropic and
non-polynomial families. NGSSF is tuned for Gaussian smoothing; we recalibrated its encoding for each family, but the filter family cannot be switched
explicitly at test time. Bottom-right insets show frequency spectra; top-right insets show mean error. See the supplemental and website for additional results.
Images from Adobe FiveK; © original photographers/Adobe.
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Fig. 7. Filter generalization on SDFs. Comparisons against recalibrated Neural Gaussian Scale-Space Fields [Mujkanovic et al. 2024] (NGSSF) for SDF filtering
with different kernels. Insets at the top-right represent the distance to the ground truth mesh, darker is better. Our model shows closer geometry to the
ground-truth compared to NGSSF. Mesh models from the Stanford 3D Scanning Repository; © Stanford Computer Graphics Laboratory.



A Convolution via Fourier Feature Encoding
A.1  Fourier transform of a Gaussian

Here we calculate the Fourier transform of the multivariate Gaussian
with covariance matrix >~! and Fourier basis vector b™:

?{px}(b) = / — exp (—%XTZ_IX) e—27n’bTx dx (16)
7 (2m) ¥ |3}
Once we combine the exponentials
1
= T/ exp (—3x'27'x — 27ib"x) dx. (17)
(2m)2[z]2 Jre

We can define the quadratic form in the exponent:

—%XTZflx—Zm'bTx = —% (x +i225b) T =71 (x + i27¥b)—27°b " Zb.

(18)

The integral becomes:

exp (—27°b"=b) /

exp (—% (x+i22%b)" =7 (x + i273b)) dx.
R

(19)
The resulting is another shifted Gaussian integral, which evalu-
ates to the same normalization factor (27) 2 =] %, yielding:

\ F{px}(b) = exp (—27°bT5b). ‘ (20)

A.2  Fourier transform of normalized ellipsoid-shaped box
filter

Consider an ellipsoid E = {x € R" : x"%7x < 1}, where X is a

symmetric positive-definite matrix. The Fourier transform of its

characteristic function yg(x) is:

F{xe}(b) = / e~ Xy, (21)
E
Diagonalize 3 as & = QAQ", where Q is orthogonal and A =

diag(A4,...,An). Let y = QTx, transforming the ellipsoid into a
scaled unit ball:

no2
y'ATly<1 o= ) i—’ <1 (22)
i=1 "t
We apply change of variables z; = \/y—/li_, so Y7, z% < 1 (unit

ball). The Jacobian determinant, which is product of square root of
eigenvalues, is |2|!/?, giving:
dx=dy, dx=|3|"%dz. (23)

Substitute x = Qy = QVAz, and let = Q7b:

F{xe}(b) = |E|1/Z/ e 2miVA) T gy = Ile/Z/ o-2miz ™Ay g
B B

(29)
The Fourier transform of the unit ball B; in R" is known:
/ e—Zm'szdz — ]n/2(27l'||(x)||), (25)
By llo||"/2

where J,/; is the Bessel function.
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Let = VA7, so |lw]| = +/nT Ay = VbT Ib. We substitute variables
and simplify further:

Jnj2 (ZHW)

Fhb) = [3]'2 —
(\/bTZb)

(26)

In addition, let us calculate the volume-normalized ellipsoid
Xe(x) = #(E)XE(X)’ where E={x e R" : x 27 'x < 1}.
The volume of E is:

n/2
VOI(E) = V,|3|'/2,  where Vj, = ——, 27)
T
and V), is the volume of the unit n-ball.
Substituting and simplifying the constants:
y I(% +1) Ju(27VbTb)
F (e} (b) = =2 = ( (28)

(m)"/ :

The Fourier transform of the ellipsoid’s characteristic function
involves Bessel functions, reflecting its sharp boundary. Unlike Gaus-
sians, which remain Gaussian under Fourier transforms, the ellip-
soid’s oscillatory frequency response encodes its geometric shape
through X. The eigenvalues of X scale the frequencies, while the
Bessel function J,/; captures radial symmetry through b™=b.

Let’s substitute and derive normalized Fourier transform expres-
sion of an ellipsoid into 2D and 3D cases.

Case 1:2D (n=2)T' (( +1) =T(2) = 1:

T (2m/bT_2b) (29)

1
VbTZEDb

Case 2: 3D (n=3)T (% +1) =T (%) = % 7, and the Bessel func-

F{xe}(b) =
T

tion Js/2(x) can be expressed as J5/(x) = ,l% (% - cosx).

Fiehb) = ———— Jy2nVETSR) | (30)

4 (‘/m)

A.3  Fourier transform of the Lanczos kernel
For a single-dimensional variable x, we write the (untruncated)
Lanczos kernel of order a, a > 0 with normalized sinc functions as:

asinrx sinx/a

L(x) = sinc(x) sinc(x/a) = 2 (31)

Note that this is the pointwise multiplication of two sinc functions.
It is known that the Fourier transform of this function is a scaled
rectangle function, which for a positive constant c is as follows:

sinc(cx) = %rect (é) (32)

where

1 : x| <i (33)
0 : else

rect(x) = {
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The Lanczos kernel is the primal-domain multiplication of two
sinc functions; it is therefore equivalently the frequency-domain
convolution of two rectangle functions

a/oo rect(b —b' /) rect(ab’ /) db’ (34)

)

which is a trapezoid (or a triangle wave if both rectangles coincide
exactly).

Since a piecewise definition of this trapezoid is unwieldy, we
refer the reader to the description of the trapezoid given in [Sarwate
2023] for more detail. In particular, for rectangle functions of widths
A and B, this trapezoidal function begins from 0 at b = —%(A + B),
rising to a maximum of min(A, B) with a slope of 1 at —% |A - B.
This is even in b, so the construction of the positive-domain part
of this function is analogous. We identified the following function
which matches the above description:

F(L)(b) = amax (min ( (a+1) —|b|, min (1, l)) , 0) (35)
2a a

For higher-dimensional cases, we consider the Lanczos kernel as
aradial kernel in ||x|| = VxTx, which is then shifted by a covariance
3. with determinant |X|. To find the Fourier transform, we make the
change-of-variable x — >1/2y as before so that dx = |%|'/2du and
use the property that the Fourier transform of a function radial in x
is also radial in b:

) = [ L) exp(-2mibTx) dx - (66)

= 1212 [ L(lul) exp(-2ri(z"7b) Tw) du
]RZ
(37)
= [BRF(L) (152l (39)

We combine this with the previous result to obtain the Fourier
transform of our multidimensional Lanczos kernel:

T(L)(b) = (1|Z|1/2 max (min (% —||Zl/zb||, min (1’ 2)) , 0)

During rejection sampling, we draw samples from the distribu-
tion proportional to the normalized absolute value of the Lanczos
kernel, i.e., p(x) o |L(x)|. Therefore, we need the total mass of
normalization in our encoding: fR |L(x)| dx. To balance accuracy
and cost, we restrict sampling to x € [—2+/a, 2v/a], which captures
most of the kernel’s mass. For our Fourier encoding, however, we
still assume infinite support: truncating in space would convolve
the ideal trapezoidal spectrum with a sinc induced by the window,
an effect that is negligible at this truncation radius. Given area can

be defined as:
/ )sinc(nuz-l/zxu)sinc(n||z-1/2x||/a) dx (40)
Rn

Radial reduction (general n). With the change of variables x =
%1/24 so that dx = |2|Y?du and ||Z7"/?x|| = ||ul|, and writing

r = ||ul|, we switch to n-D spherical coordinates:

_/Rn
= [3%s /M
- n-1

0

where S, = I?Z’n—ll//zz) is the surface area of the unit (n—1)-sphere.
Finally we define the Fourier transform of our Lanczos kernel as:

a a+1 1
F{L}(b;) = — max(min —— — 4/bIZb;, min |1, -], 0)
Zn 2a ! a
(43)
We numerically estimate z; = 0.9499393398, z, = 0.9913304793, z3 =
1.2732395447 following: z,, = Sn_lfoz\/a’sinc(r) sindr/a)|r™* " dr.

sinc([[=~/2x])) sinc(||z-1/2x||/a))dx (41)

sinc(r) sindr/a) r"dr, (42)

PSNR vs Depth (equal-param MLPs)

43.4 -

43.3 7

43.2 4

43.1 4

Anisotropic PSNR

43.0 1

Network Depth (# hidden layers)

Fig. 8. Depth ablation at matched parameter counts. We vary MLP depth
while holding total parameters constant (adjusting width accordingly); a
three-layer MLP achieves the optimal reconstruction quality.
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Ours

Trained with Gaussian Trained with Box Trained with Lanczos  Trained with all

Gaussian

Fig. 9. Filter generalization on Images. Comparisons between different training/testing pairs and recalibrated Neural Gaussian Scale-Space Fields [Mujkanovic
et al. 2024] (NGSSF) for image filtering with different kernels. Insets at the bottom-right of each image represent the frequency spectrum, and insets at the
top-right represent the absolute mean error map. Our model can generalize to unseen filters at testing time with less error compared to NGSSF. Images from
Adobe FiveK; © original photographers/Adobe.
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Ours
NGSSF Trained w/ Gaussian  Trained w/ Box Trained w/ Lanczos Trained with all GT
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Fig. 10. Additional filter generalization comparisons. Images from Adobe FiveK; © original photographers/Adobe.
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