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1. Outline
We organize the supplementary according to the section

numbers used in the main manuscript. In Section 4.2, the
derivation for topological derivative (TD) with respect to
phase nucleation is outlined. We show a comparison be-
tween area-sampling and edge-sampling in Figure 1. In
Figure 3 we show additional results for 2D vector graphics
recovery using score-distillation-sampling [7]. We test our
proposed theory on real-world data for 3D reconstruction
in Figure 2, with discussion in Section 5.2. We discuss the
relevance of curvature in the same section. A more detailed
derivation for secondary visibility is in Section 5.2.1 with
additional illustrations for the optimization results shown in
the main paper. We provide implementation details for all
the experiments in Section 7.

4.2. Topological Derivatives in 2D

We first outline the derivation for TD with respect to
nucleating phases in the exterior of closed 2D curves.

Result 4 Let Γ be a closed curve with ΩΓ as its interior. For
a point x ∈ R2 \ ΩΓ the topological derivative with respect
to phase nucleation is,

Dτ (x) = gF (x)− gB(x).

We follow the same derivation structure as in the case
of hole nucleation. The main difference comes from how
we define the notion of a perturbed shape. Consider a point
u ∈ I in the image plane, such that the corresponding point
on the 2D plane x ∈ R2 lies in the exterior of the given curve.
We introduce a circular disk Bϵ of radius ϵ centered at x.
The topological derivative with respect to this perturbation
is then,

Dτ (x,ΩΓ) := lim
ϵ→0

I(ΩΓ ∪Bϵ(x))− I(ΩΓ)

V (Bϵ)
. (1)

Note that the perturbed image functional is defined for the
union of the original shape and the circular disk. The asymp-

totic expansion of (1) is,

I(ΩΓ ∪Bϵ) = I(ΩΓ) + V (Bϵ)Dτ (x,ΩΓ) + o(V (Bϵ)).
(2)

We now construct a similar normal velocity as in the case
of TD for hole nucleation. Let v be a continuous normal
velocity such that v = 1 on the boundary ∂Bϵ of the added
phase and v = 0 on the original curve Γ. Intuitively, this
function expands the radius of the circular disk by 1. Our
goal is to measure the change in the functional I as we
expand the nucleated phase and ϵ → 0. We take the Gâteaux
derivative of (2) in the direction v. By definition, we know:

dI(ΩΓ)v = 0. (3)

From (2) and (3), we can redefine the TD as,

Dτ (x,ΩΓ) = lim
ϵ→0

1

V ′(Bϵ)
dI(ΩΓ ∪Bϵ)v

= lim
ϵ→0

1

V ′(Bϵ)

∫
Γ∪∂Bϵ

(gF − gB)v dσ

= lim
ϵ→0

1

V ′(Bϵ)

∫
∂Bϵ

(gF − gB) dσ

= gF (x)− gB(x).

(4)

The last step in the derivation is implied from: as ϵ → 0,
gF and gB correspond to gF (x) and gB(x), and

∫
∂Bϵ

(gF −
gB) dσ = 2πϵ× (gF (x)− gB(x)).

Eliminating Edge Sampling We show that the SD and
TD for a closed curve is the same in their functional form.
A level-set PDE which uses only shape derivatives has the
evolution dynamics defined only on the curve. For numerical
optimization, this requires explicit sampling of the bound-
aries as in [4]. Using the TD, the level-set PDE is defined
everywhere on the image plane and we can evolve curves
using area sampling. In practice, for complex shapes, this
will lead to faster optimization. In Figure 1, we compare
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Figure 1. Area sampling v/s edge sampling. We can evolve
curves using only area sampling (bottom) and get similar curve
evolution as from a differentiable rasterizer [4] (top) which uses
edge sampling. In practice, this leads to reduced optimization
runtimes.
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Figure 2. Preliminary results on 3D shape recovery with real
data. We test our proposed theory on topological derivatives for
multi-view 3D reconstruction using real data. Given 64 images
for scan 106 from DTU dataset [2], we reconstruct shape and
reflectance starting from spherical initialization. On the top we
show the depth map for the recovery and the textured mesh is shown
on the bottom. We note that this result is still a proof-of-concept
that demonstrates the potential of using topological derivatives in
the presence of irregularities in real-world data.

shape optimization using edge and area sampling. The area
sampling example uses a single sample per pixel and only
compares colors with the target at the centre of the pixel.

Generative Vector Graphics We provide additional re-
sults for generating vector graphics using SDS [7] in Fig-
ure 3.

5.2. Initial Demonstration on Real Data

We test the feasibility of using topological derivatives
with real data. Given a set of images, with a known back-
ground for each image, we reconstruct the object of interest
and its reflectance. We use a neural reflectance function
fθ : R3 × R3 × R3 → R3, which takes the position, normal
and viewing direction as input and estimates the outgoing
radiance. θ is the set of parameters for the neural network.
Figure 2 shows the recovery using our method with an ab-
lation on TD. Our initial results indicate that TD is useful

for taking large steps to recover a coarse shape and resolve
some of the shape/radiance ambiguities. Using only shape
derivatives, we find the optimization to be biased towards
optimizing reflectance parameters, which results in floating
artifacts. We note that these results are preliminary and act
as a proof of concept for using TD in the presence of non-
idealities such as sensor noise, error in camera positions and
distortion.

Curvature κ The TD for 3D depends on the curvature of
the perturbed surface, which is not the same as the curvature
at a point x on the unperturbed surface. It depends on how
we define the cone of perturbation. In practice, we find
that we are able to achieve good recovery by assuming the
curvature of the unperturbed shape to be constant across
the entire surface. To understand this relevance of κ during
optimization, we revisit the level-set PDE used for surface
evolution:

∂ϕ

∂t
= −dI(Γ)|∇ϕ| − λDτ (x,Γ)|∇ϕ|. (5)

Note that there is an additional factor λ in this PDE in com-
parison to the equation (24) in the main paper. We use λ as a
weighting term to balance shape and topological derivatives
during optimization. By assuming constant curvature, we
can absorb κ into the weighting term λ.

5.2.1 Secondary Visibility

Γ
gB

u x′

x

Although our notation for topological deriva-
tives follows the standard definition [10], for
brevity, we assume that the TD is conditional
to a given camera position and it’s viewing di-
rection. For primary visbility this is implicitly
defined using the cone of perturbation where
the apex is the camera’s origin. This relationship between
the camera position and the topological derivative is different
in the case of secondary visibility. Here, the apex is at the
shading point x which is the first intersection point for a ray
originating from the camera. For this case, the definition
of the scene functions g and gB also differ. For primary
visibility, the function g represents the radiance error along
a ray originating at the camera center, whereas for secondary
visibility, g corresponds to the radiance error for a light path
that begins with u → x → x′. Similarly the function gB
defines the error when the first occluder does not exist in
case of primary visibility — and for secondary visibility, the
error for path starting with u → x → x′ but without the
occluder corresponding to the secondary intersection. Apart
from the differences in these definitions, the derivation for
the TD for secondary visibility follows similarly from pri-
mary visibility. We assume a virtual camera centered at the
shading point x and from the TD definition in Result 3 from
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Figure 3. Generating complex vector graphics using score-distillation [7] We show additional results for the task of reconstructing vector
images using a non-standard reconstruction loss. We use score-distillation-sampling loss from [7] with a stable diffusion model [9]. The shape
initialization is the same as shown in Figure 4 in the main paper. In the order of top to bottom and left to right, the following text-prompts are
used for generation: mouse, horse, penguin, eagle, mantis, pufferfish, cow, meerkat, rabbit, fennic
fox, owl, shoebill, frog, koala, tiger. We augment the prompts with “Frontal face of <tag>. Minimal line drawing.
Trending on artstation. Plain white background. Black and white.”
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Figure 4. Reconstructing shape ambigrams We aid the GEB il-
lustration (Figure 9) shown in the manuscript with mid-optimization
renderings for NIE [6] + Mitsuba 3 [1] and our method. The recov-
ery starts from a spherical initialization and progresses as shown
here (from left to right).

the main manuscript, we arrive at this result,

Dτ (x
′,Γ) = (g(x′)− gB(x

′))
κ(x′ − x)t(x′ − x)

(x′ − x)3z
. (6)

The change of terms from x to x′−x is due to the reposition-
ing of the camera from the origin to x. To be more specific,
g(x′) can be expanded to g(u → x → x′). In Figure 4 we
show the optimization progression for the results shown in
Figure 9 in the main manuscript.

7. Implementation Details
Image Vectorization The image vectorization experiment
uses a 128× 128 2D grid to discretely reprent the level-set
function ϕ. At initialization, ϕ is a signed distance function
(SDF). During optimization, we do not enforce ϕ to be an
SDF. The raster input is a 128 × 128 image upsampled to
512× 512. At each iteration, we extract the 0-isocontours
from the level-set function. The point-set for these contours
are then used as closed bezier paths that we rasterize at
512× 512 resolution. The scene functions gF (x) and gB(x)
are defined as |F (x)− c(x)| and |B(x)− c(x)| respectively.
F (x) and B(x) correspond to foreground and background
colors at x, and c(x) is the color in the target raster image.
We use a single sample per pixel and evaluate these functions
at the center of the pixel. We use Adam as the optimizer and
the learning rate for both shape derivative and topological
derivative methods is 0.01.

Generating Vector Graphics We use a 128 × 128 level-
set grid. The score-distillation-sampling loss is from [7]:

∇L = Et,ϵ

[
w(t)(ϵ̂(zt : y, t)− ϵ)

∂z

∂x

]
, (7)

where t is the diffusion time step, w is a weighting term,
zt is the noisy latent variable, y is text-embeddings, ϵ̂ is

Figure 5. Samples from the set of images used for multi-view re-
construction. We use the kloppenheim 06 known environment
map by Greg Zaal [13].

the estimated noise and ϵ is the ground-truth noise added to
the latent variable. We use this gradient with our level-set
PDE to optimize closed bezier curves given a text-prompt.
The method using Li et al.’s [4] differentiable rasterizer
is initalized with 128 randomly initialized disks with 12
control points. Our method is initialized with an SDF of
a disk. The images are rasterized at 512 × 512 resolution.
We use the learning rate scheduler from [12]. Our method
is run for 2000 iterations and Li et al.’s method is run for
400 iterations. We find that the quality of output degradges
significantly after 400 iterations with Li et al.’s method.

Multi-View 3D Reconstruction Each example is recov-
ered from a set of 100 images of 256×256 resolution, except
for helix, which is rendered at 512× 512. We use a level-
set function ϕ defined on a 3D grid of 128 × 128 × 128
resolution. Each shape is assumed to have a constant dif-
fused BRDF. We use a known environment map [13] and use
low-frequency illumination using spherical harmonics [8].
We finetune recovered meshes for each example after 1200
iterations and the total number of iterations is 2000. We
employ a Laplacian regularizer for smoother recovery. At
each step, we extract a mesh using Marching Cubes [5] at
1283 resolution. We use nvdiffrast to estimate the shading
and edge visibility gradients [3]. The scene functions g and
gB correspond to L2 error between target - foreground and
target - background. We use a single sample at the centre
of each pixel to estimate the topological derivative. The
weighting term as discussed in (5) is 0.002, which we reduce
to 0 after 1200 iterations.

Secondary Visibility We use a single image of 512× 512
resolution to recover the shape. We use Mitsuba 3 [1] to
estimate the shading and edge visibility gradients. To esti-
mate the topological derivatives, we use a custom integrator
for a two-bounce rendering model. Three spotlights are
placed in the scene, one opposite to each of three orthogo-
nal planes shown in Figure 4. We use emitter importance
sampling for the integrator. The shape is extracted using
marching cubes [5] at each iteration at 1283 resolution. We
use λ = 0.001.

Initial Experiments with Real Data We use 64 images
for scan 106 from the DTU dataset [2]. Each image is



downsampled to 300 × 400 × 3. For a more controlled
setup, we segment out the background and replace it with
a constant color. We use a 3 layered, 256 neurons-wide
MLP with ReLU activations as the neural BRDF. The input
position to the network is mapped to fourier features [11].
We fine-tune the extracted mesh after 2000 iterations and
the total number of iterations we use is 4000. The total
optimization time is ∼ 1hr.
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