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Abstract

We introduce a theoretical framework for differentiable
surface evolution that allows discrete topology changes
through the use of topological derivatives for variational
optimization of image functionals. While prior methods for
inverse rendering of geometry rely on silhouette gradients
for topology changes, such signals are sparse. In contrast,
our theory derives topological derivatives that relate the in-
troduction of vanishing holes and phases to changes in image
intensity. As a result, we enable differentiable shape pertur-
bations in the form of hole or phase nucleation. We validate
the proposed theory with optimization of closed curves in
2D and surfaces in 3D to lend insights into limitations of
current methods and enable improved applications such as
image vectorization, vector-graphics generation from text
prompts, single-image reconstruction of shape ambigrams
and multiview 3D reconstruction.

1. Introduction
Recovering geometry from images is a central theme for

several problems in vision and graphics, where a common
approach is to derive the differential of the rendering func-
tional. Depending on the type of surface representation used,
such as Bézier paths [25], triangle meshes [10, 24] or level-
sets [12], corresponding gradient flow equations are derived.
These works formulate image differentials as shape deriva-
tives, which we posit to be restrictive for inverse problems,
since deformations induced by shape derivatives (SD) are
limited to surface boundaries. This may lead to local min-
ima when recovering geometry with high-genus topology.
In Figure 1 we illustrate two inverse problems where shape
derivatives do not suffice to recover the optimal shape. In
such cases the optimization is required to make updates far
away from the boundary by (a) nucleating additional volume
in the exterior, and (b) perforating the interior of the shape.
Our work theoretically characterizes such shape perturba-
tions in the form of topological derivatives (TD) for inverse
rendering.

We derive TDs following the definition proposed by
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Figure 1. Pathologies of shape derivatives. Previous work on
inverse surface reconstruction relies on shape derivatives which are
inadequate for instances when (a) the target geometry is far from
the initialization, and when (b) target has a hole in the interior. We
resolve these failure cases with topological derivatives.

Sokolowski and Zochowski [44]. In the case of planar
curves, vanishing balls are introduced in their interior or
exterior. In the limit, the TD is estimated as the difference
in the image functionals for the perturbed and unperturbed
shapes. The resulting gradient updates can prompt hole and
phase nucleation in regions of high-error (see Figure 1). For
closed surfaces in 3D, we introduce TDs with respect to
conic perturbations through the interior of the visible shape.
We observe that visibility terms in SDs are evaluated only
on the apparent contours of the visible shape. In contrast,
gradient flows using TDs can encourage visibility changes in
the interior, resulting in a more robust and accurate recovery.

Informed by recent successes in inverse rendering [2, 30,
46, 47, 49], we use level-sets [38] for surface representa-
tion. We build on the extensive literature on variational
level-sets [11, 19, 45, 52] for surface reconstruction. Our
approach differs from the more recent methods on differen-
tiable rasterization [25] and rendering [2, 17, 24, 46] that
use differential calculus to derive geometry gradients. The
variational framework lends us a common structure to ana-
lyze the motion of continuous surfaces in both 2D and 3D.
It also provides a natural way to extend shape derivatives
to the formulation for topological derivatives. Additionally,
using this approach, we are able to draw theoretical insights
across literature spanning 3D reconstruction [6, 12], topol-
ogy optimization [44], differentiable vector graphics [25]
and differentiable rendering [17, 22, 24, 41].

We structure this work as three theoretical results inter-
spersed with empirical observations for closed curves in 2D
(§ 4) and surfaces in 3D (§ 5). Previous work on differ-
entiable rasterization [25] proposes geometry gradients for



standard vector graphics representations. In Result 1 (§ 4.1),
we derive a corresponding shape derivative for level-sets in
the variational setting. Motivated by the above limitations,
we derive topological derivatives for hole and phase nucle-
ation in Result 2 (§ 5.2). We show practical applications
of image vectorization and text-to-vector graphics using an
evolution equation that works with arbitrary loss functions.
In § 5.1 we reason about the necessity of TDs in 3D. Result 3
(§ 5.2) discusses the construction of conic perturbations and
the derivation for TD. We show improvements over previous
methods that rely on SDs in terms of speed for visibility
optimization (Figure 5), accuracy of recovery for complex
topology (Figure 8) and also show an application of recon-
structing shape ambigrams from a single image (Figure 9).

2. Related Work

In this section, we concisely situate our work with respect
to literature on level-sets, differentiable rendering and topo-
logical derivatives. A more detailed discussion on literature
relevant to our problem formulation, theory and experimental
settings can be found within Sections 3, 4 and 5.

Level Sets We use the level-set method [38] for shape evo-
lution. In the case of 3D, level-sets have been extensively
used for shape reconstruction from range data [48], stereo
images [11], multi-view images [12] and RGB-D data [34].
In 2D, they have been used for image segmentation as active
contour models [7, 8, 21]. These methods derive equations
of motion for curves and surfaces as a set of partial dif-
ferential equations that minimize an optimization objective.
Solem and Overgaard [45] provide a geometric viewpoint
to analyze these methods. The first variational approach
to level-set optimization was proposed by Zhao et al. [52]
for multi-phase surface motion. More recently, level-sets
as signed-distance functions have become a popular choice
for generative modeling of 3D shapes [9, 39] and inverse
rendering [18, 27, 36, 50].

Differentiable Rendering Differentiable renderers are de-
signed to estimate the derivatives of a rendering integral
with the primary focus on handling geometric discontinu-
ities. One class of differentiable renderers handles primary-
visibility discontinuity for triangle meshes [22, 26, 28, 41]
with a blurring kernel — an approach that is fast but not
physically accurate. Li et al. [24] propose edge sampling
to correctly handle discontinuities and differentiate the full
rendering equation [20], which was later extended for dif-
ferentiable rasterization of vector graphics [25]. Subse-
quently, several works aim for numerical efficiency and accu-
racy [3, 17, 29, 51]. Work by Bangaru et al. [2] and Vicini et
al. [46] is especially relevant to our work as they handle
discontinuities for surfaces represented by signed-distance

functions. All such works measure image sensitivities with
respect to visibility changes on silhouette boundaries, while
we focus on meaasuring them in the shape’s interior.

Topological Derivatives The standard definition of topo-
logical derivatives is given by Sokolowski and Zo-
chowski [44]. Part of our notation comes from the asymptop-
tic analysis of TDs in [33]. They have been used in relatively
low-dimensional problems in physics for electrical impe-
dence tomography [14] and inverse scattering [6], or in struc-
tural engineering to discover optimal support structures [1].
In computer vision, the use of topological derivatives has
been limited to a few problems in image processing [23].
The work by Burger et al. [5] is perhaps the closest to ours
in terms of using the level-set method with SDs and TDs.
Please refer to [37] for a recent survey on the usage of TDs.

3. Background and Problem Formulation
We consider the problem of inverse shape optimization

from a set of images. Our focus is on recovering closed
curves in 2D and closed surfaces in 3D. With Γ being the
surface under consideration, we take a variational optimiza-
tion approach to minimize an image functional,

min
Γ
I(Γ) =

∫
I
g(u) du. (1)

The functional I is defined over an image plane I with du as
the pixel-area measure. The integrand g is evaluated at pixels
u and can be any reasonable error function. For instance,
g = |L̂ − L| can evaluate the error between measured (L)
and estimated radiance (L̂).

We define Γ as a closed n-dimensional surface residing
in Rn+1, where n = 1 for planar curves and n = 2 for
surfaces in 3D. We use a level-set function ϕ : Rn+1 → R
to represent Γ as, Γ := {x : ϕ(x) = 0}. We use the
standard convention [38] to represent the interior of Γ as
ΩΓ = {x : ϕ(x) ≤ 0} and the exterior as Rn+1 \ ΩΓ.

To recover the optimal surface, we require a notion of
gradient in the variational setting — for which we build on
the framework of variational level-sets [45]. Consider the
surface Γ to be a point on an m-dimensional manifold M
of admissible surfaces. The functional I to be minimized
can be considered a scalar function that maps M → R. We
use the idea of differentials (and corresponding Gâteaux
derivatives) from differential geometry [32]. We derive the
gradient ∇MI and optimize Γ with an initial value problem:
Γ̇(t) = ∇MI(Γ(t)), with Γ0 as the surface at initialization.
The optimal surface Γ∗ can be then be recovered using a
regular surface evolution of t 7→ Γ(t). By definition, the
gradient flow ∇I is composed of only normal components
as tangential flow fields keep Γ invariant [38]. We refer the
reader to [45] for a more rigorous discussion on why ∇I
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is a descent direction and reduces I . Intuitively, ∇I is a
scalar speed in the direction of the normal n at each point
x ∈ Γ such that I is reduced. The corresponding evolution
equation for the underlying level-set function is,

∂ϕ

∂t
= −∇MI|∇ϕ(t)|. (2)

In Sections 4 and 5 we derive evolution equations of this
form to minimize I in the case of closed curves in 2D and
surfaces in 3D respectively. Computing ∇I requires defining
an inner product which operates on the tangent space TΓM
at Γ. For w and v normal velocity directions on TΓM , we
can define ⟨·, ·⟩Γ : TΓM × TΓM → R as,

⟨w, v⟩Γ =

∫
Γ

w(x)v(x) dσ, (3)

where dσ is the surface measure. Consider v ∈ TΓM as
any normal velocity direction of the form v = − ψ

|∇ϕ| . We
can deform the surface Γ in this direction by updating the
level-set function as ϕs = ϕ+ sψ, where s controls the level
of deformation and ψ is the speed. The directional (Gâteaux)
derivative of I in this direction v can then be defined as [45],

dI(Γ)v :=
d

ds
I(ϕ+ sψ)

∣∣∣
s=0

. (4)

For any such normal velocities v in the tangent space, if we
can reformulate (4) as,

dI(Γ)v =
d

ds
I(ϕ+ sψ)

∣∣∣
s=0

?
= ⟨w, v⟩Γ, (5)

then w is the gradient ∇MI . We revisit this definition of
Gâteaux derivative (5) and the evolution equation (2) in the
subsequent sections to derive gradient flows using shape and
topological derivatives.

4. Curves in 2D
We derive equations of motion for closed planar curves

subject to a rendering functional. These equations take the
form of shape derivatives (§ 4.1) and topological deriva-
tives (§ 4.2) and can be used to recover 2D vector shapes
with respect to an error function. With this formulation, we
show shape evolution for image vectorization (Figure 3) and
generation of vector graphics from text prompts (Figure 4).

4.1. Shape Derivatives

Result 1 Let I be an image functional of a closed curve Γ
encoded as the 0-isocontour of a level-set function ϕ in R2.
If the interior of the shape corresponds to a foreground scene
function gF and the exterior to a background function gB
then the shape derivative ∇I is,

∇I = gF − gB .

We start by looking at the image integral (1) that integrates a
scene function g over the image plane,

I(Γ) =

∫
I
g(u) du =

∫
R2

g(x) dx, (6)

where g is any arbitrary function of color on the image plane.
For 2D rasterization, the image plane coincides with R2

and hence we can change the integral domain as shown in
(6). We also assume that g is band-limited to the support
of the image i.e., g(u) = 0 for u /∈ I. The closed curve
Γ partitions the R2 plane into two regions as per Jordan’s
Curve Theorem [13]. We delineate the two regions with
scene functions gF and gB for foreground and background
respectively. We use a level-set function ϕ to synthesize a
characteristic function H ◦ ϕ, where H is a standard heavi-
side function. By construction, our function evaluates to 0 in
the foreground and 1 in the background. The characteristic
function can be used to expand the integrand as,

I(Γ) =

∫
R2

gF (x)[1−H(ϕ(x))]+

gB(x)H(ϕ(x)) dx.

gBΓ

gF
I

H
◦ ϕ

=
0

We can now the derive the shape derivative ∇I using a
perturbation of the form ϕs = ϕ + sψ that corresponds to
velocity v. The Gâteaux derivative of I in this direction v is,

dI(Γ)v =
d

ds
I(ϕ+ sψ)

∣∣∣
s=0

◁ From (4)

=

∫
R2

gF
d

ds
[1−H(ϕs)] + gB

d

ds
H(ϕs) dx

∣∣∣
s=0

=

∫
R2

−δ(ϕ)ψgF + δ(ϕ)ψgB dx

=

∫
R2

(gF − gB)
−ψ
|∇ϕ|

δ(ϕ)|∇ϕ| dx

=

∫
Γ

(gF − gB)v dσ = ⟨gF − gB , v⟩Γ, (7)

where dσ = δ(ϕ(x))|∇ϕ(x)|dx is the surface measure
[16, 45] and v = −ψ

|∇ϕ| . Note the interchange of integral
and differential operators due to Leibniz rule. Comparing
the definitions in (5) and (7), we conclude that the shape
derivative for functional I is,

∇I = gF − gB . (8)

The shape derivative in (8) can be used to minimize I using
the level-set evolution equation (2). As per the domain of
the integral in (7), this derivative is defined only on the curve
Γ. Li et al. [25] arrive at a similar result using differential
calculus and numerically evolve 2D shapes by explicitly
sampling the edges. As shown in Figure 3, SDs can fail to
prompt crucial topology changes for image vectorization.
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Figure 2. (a) We derive topological derivatives for 2D rendering
functionals. An infinitesimal-hole of perturbation Bϵ with radius
ϵ → 0 is introduced at point x. A Gâteaux derivative is computed
in the direction of a normal velocity v such that v = 1 on ∂Bϵ

and 0 on the unperturbed surface Γ. (b) We find functional forms
of shape and topological derivatives to be the same with the only
difference being the domain. Numerically, this eliminates the need
for explicitly sampling boundaries for shape evolution as in [25].

4.2. Topological Derivatives

The topological derivative measures sensitivities with
respect to infinitesimally small perturbations in a shape’s
volume. We derive the topological derivative in the context
of inverse rendering to inform where to nucleate holes and
phases in a shape in order to reduce a rendering functional.

Result 2 Consider a closed curve Γ with ΩΓ as its interior.
For a point x ∈ R2 the topological derivative with respect
to hole and phase nucleation is,

Dτ (x) = gF (x)− gB(x).

We follow the standard definition of a topological derivative
from Sokolowski and Zochowski [44]. We focus on hole
nucleation in this section and defer the derivation for phase
nucleation to the Supplementary. Let ΩΓ denote the interior
of a given curve Γ. For a point u ∈ I on the image plane,
we introduce a small circular hole Bϵ(u) of radius ϵ. The
topological derivative of the image functional I at a point
x ∈ ΩΓ can then be defined as a scalar function,

Dτ (x,ΩΓ) := lim
ϵ→0

I(ΩΓ \Bϵ(x))− I(ΩΓ)

V (Bϵ)
, (9)

where I(ΩΓ) is the functional value with the unperturbed
shape, Bϵ is the closure set of points inside the perturbation
and V (Bϵ) = πϵ2 is the area of the circle. The correspond-
ing asymptotic expansion of this definition [33, 44] is,

I(ΩΓ \Bϵ) = I(ΩΓ) + V (Bϵ)Dτ (x,ΩΓ) + o(V (Bϵ)).
(10)

We compute the Gâteaux derivative of this expression in the
direction of a normal velocity v defined as shown in Figure 2
(a). Intuitively, the defined velocity increases the size of the
perturbation by a constant and keeps the curve Γ as it is.
Formally, v = 0 on the unperturbed curve Γ and v = 1 at the
boundary ∂Bϵ of the perturbation hole, such that it smoothly

Raster Input TD

SD [25]

Figure 3. Reconstruction of vector images from raster input.
Shape derivatives (analagous to curve gradients in [25]) evolve
closed curves with visibility changes only on the boundaries. These
gradients are sparse and the optimization can plateau at a local
minimum (top). Topological derivatives can reconstruct a vector
image (bottom) from a raster input (left) with adaptive topological
changes.

goes to 0 outside a small neighborhood of x. Assuming
x /∈ Γ and since velocity v is 0 on the unperturbed curve,
the shape derivative (8) in the direction v is 0:

dI(ΩΓ)v =

∫
Γ

(gF − gB)v dσ = 0. (11)

From (9), (10) and (11) we can rewrite the TD as:

Dτ (x,ΩΓ) = lim
ϵ→0

1

V ′(Bϵ)
dI(ΩΓ \Bϵ)v

= lim
ϵ→0

1

V ′(Bϵ)

∫
Γ∪∂Bϵ

(gF − gB)v dσ.

(12)

Note that with the introduction of a hole, the perturbed
shape is comprised of surface elements from the original
domain Γ in addition to the boundary ∂Bϵ of the hole —
that is, Γ̂ = Γ ∪ ∂Bϵ where Γ̂ is the perturbed curve (see
Figure 2 (a)). The denominator of (12) is a result of the
fact that dV (ϵ)v = V ′(ϵ) = 2πϵ as v = 1 on the hole’s
boundary. Further simplification yields:

Dτ (x,ΩΓ) = lim
ϵ→0

1

2πϵ

∫
Γ

(gF − gB)v dσ+∫
∂Bϵ

(gF − gB)v dσ

= lim
ϵ→0

1

2πϵ

∫
∂Bϵ

(gF − gB) dσ

= gF (x)− gB(x).

(13)

Equation 13 is the topological derivative of the image func-
tional I at a point x. Intuitively, at a given point in the
interior of the shape, if the error with respect to the back-
ground color is lower than the foreground, formation of a
hole can be prompted by increasing the value of ϕ(x). We
note that Dτ is defined in R2 \ Γ. This is in stark contrast
with the shape derivatives from Result 1 that encouraged
visibility changes only on the curve. By analogy, we also
derive topological derivatives for phase nucleation and arrive
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Figure 4. Adaptive generation of detailed vector graphics. Our
formulation for surface evolution can be used to induce topological
changes subject to any differentiable loss functions for images.
Here we show an example of generating vector graphics from a text
prompt using the score-distillation-sampling loss from [40]. (top)
Existing methods use differentiable vectorization from [25] and are
forced to work with fixed shape topologies. (bottom) Conversely,
topological derivatives can be used to adaptively generate detailed
vector graphics from a simple initialization (bottom-left). 1

at the same result, i.e. Dτ (x,R2 \ ΩΓ) = gF (x) − gB(x),
where x is a point in the exterior of the given shape. The full
derivation is in the Supplementary.

Level-Set Evolution We can now formulate the evolution
equation in (2) using both shape and topological derivatives:

∂ϕ

∂t
= − [∇I(x) +Dτ (x)] |∇ϕ|. (14)

The SD ∇I is defined on Γ and is 0 elsewhere. The TD
Dτ is defined on R2 \ Γ. As shown in Figure 3, we can
use the evolution equation for image-based reconstruction
of vector graphics from raster input. When only the first
term ∇I is used, the optimization can plateau at a local
minimum. The second term is critical for recovering the
target geometry, particularly when the target has a differing
geometric structure from the initialization. We show more
results in this context along with the implementation details
in the Supplementary.

Eliminating Edge Sampling Comparing Result 1 and Re-
sult 2, we find that the topological and shape derivatives are
exactly the same except for the domain on which they are
defined. This simplifies the evolution equation in (14) with a
single term for the entirety of R2,

∂ϕ

∂t
= (gB − gF )|∇ϕ|. (15)

In practice, for numerical optimization, we find that this
simplification eliminates the need for explicitly sampling

1Text-prompt: “Frontal face of animal. Minimal line drawing. Trend-
ing on artstation. Plain white background. Black and white.”

Initial Shading Visibility Both Target
Figure 5. Visibility gradients drive topological changes. Given
a set of multi-view images, we recover a genus-1 shape from a
sphere. When shading gradients are used the optimization makes
only local updates. Using visibility gradients the topology and the
silhouettes of the recovery match the target. Both the terms are
required for optimal recovery.

boundaries for shape evolution as done in Li et al.’s [25]
method for differentiable vector graphics (Figure 2 (b)). For
complex shapes, with a large set of paths, this leads to faster
optimization. We provide details in the Supplementary.

Generative Vector Graphics Using the chain-rule, the
evolution equation can be adapted for problems beyond just
reconstruction. Given an aribitrary differentiable loss func-
tion L, we can evolve the shapes with topological changes
such that L is minimized by the following evolution:

∂ϕ

∂t
=
∂L
∂I

(gB − gF )|∇ϕ|. (16)

We show an application of generating 2D vector graphics
from text-prompts with a text-to-image diffusion model [43].
The loss function L is the score-distillation-sampling loss
from [40]. Previous methods for text-to-svg use the differ-
entiable rasterizer from [25]. Such methods require a fixed
number of shapes starting from the intialization and cannot
adaptively change the topology in a differentiable manner.
Using topological derivatives, we show highly-detailed gen-
eration of vector graphics from a relatively simple initializa-
tion of a disk (Figure 4). More examples and implementation
details are in the Supplementary.

5. Surfaces in 3D

Similar to the 2D case, our goal is to minimize the image
functional I defined in (1). Comparing it to the rendering
equation [20], I can depend on scene parameters such as
the geometry, material and lighting in the scene. We focus
on geometry optimization and take the material and lighting
parameters as given. The function g is discontinuous in terms
of the geometry parameters and hence naively differentiating
I using automatic differentiation is erroneous [24].

5.1. Background on Shading and Visibility

To address discontinuities with respect to visibility
changes, Gargallo et al. [12] derive the shape derivative

5



C

I

n

y

gB

Γ

ϵ

Cone of Perturbation Target

SD TD

(a) (b)

Circle of
Perturbation

Figure 6. (a) We derive topological derivative at a point y on a
surface Γ using a vanishing cone of perturbation originating at the
camera C. (b) Visibility terms from shape derivatives (SD) are
evaluated only at the apparent contours. In flatland, these points
resemble the extreme points of the convex set of the shape. A target
shape with the same convex booundary as the initial shape cannot be
recovered using the visibility terms in SDs. TDs evaluate visibility
changes on the entire surface and can resolve such ambiguities.

of I to evolve a level-set function ϕ as,

dI(Γ) = −∇g · x

x3
z︸ ︷︷ ︸

Shading

χ+ (g − gB)
x · ∇(n · x)

x3
z

δ(n · x)︸ ︷︷ ︸
Visibility

χ,

(17)

where χ denotes the visibility, n the normal and xz the z co-
ordinate. The first term here is similar to shading gradients in
more recent differentiable renderers [17, 22, 24, 41], which
can be used to make local updates in the interior of the visi-
ble surface. The second term is enabled only at the silhouette
boundary as per δ(n ·x), where δ is a dirac distribution func-
tion. The difference g − gB moves the visible contours of
the surface based on the foreground (g) and background (gB)
radiance. This visibility term is similar to shape derivatives
in the 2D case (8), with additional factors to account for the
distance from the camera, visibility and shape curvature.

Need for Topological Derivatives For recovering geome-
try with complex topology, we find the visibility gradients
to be critical in terms of recovering the overall structure. We
empirically show this in Figure 5, where a genus-1 shape
is optimized from a sphere using the two gradient forms.
When only shading gradients are used, the optimization fails
to evolve the topology; with visibility gradients in isolation
we can retrieve the correct topology but not the details; when
both are used together, we recover the target shape. De-
spite this significance, the optimization signal obtained from
visibility gradients is quite sparse. As evident from (17),
these gradients are evaluated only at the extremeties of the
shape and cannot induce visibility changes in the interior of
the shape. In flatland, this means that visibility gradients

account for changes only at the extreme points of the convex
set covering a shape (as shown in Figure 6 (b)). This makes
the optimization susceptible to unexpected local minima as
topological changes are less likely in regions away from the
surface. Our goal is to resolve this by enabling topological
changes in the interior regions using gradients that measure
visibility changes on the entire surface.

5.2. Topological Derivatives

Result 3 Let I be an image functional of a closed and con-
nected surface Γ in R3. The functional I integrates a scene
function g for the surface and gB for the background. Then
the topological derivative of I at a point y ∈ Γ with re-
spect to an infinitesimal conical perturbation from the origin
through y is,

Dτ (y,Γ) = (g(y)− gB(y))
κyty

y3
z

.

In case of surfaces in R3, there is a large class of infinitesimal
perturbations that change the configuration of the shape.
In this work we focus on perturbations that influence the
genus of the shape. We begin by considering a point y
on a surface Γ at which want to estimate the topological
derivative. Without loss of generality, we will assume that
the surface Γ is placed in between the camera at the origin
and a background scene. A curved circle of planar radius
ϵ is placed on the surface with y as the center (Figure 6
(a)). We term the corresponding planar circle as the circle of
perturbation. Starting from the origin, we can find an elliptic
cone that inscribes this circle at an angle that is consistent
with the normal at y. We use this cone to define our perturbed
shape as the difference of the enclosed volume of the original
shape and the intersection of the original shape with the
cone of perturbation. If ΩΓ is the interior of Γ and Ωϵ of
the perturbation cone, then ΩΓ̂(ϵ) = ΩΓ − ΩΓ ∩ Ωϵ is the

volume enclosed by the perturbed surface Γ̂. By construction,
we know that as ϵ → 0, the perturbed surface Γ̂(ϵ) → Γ.
Beyond just the perturbation, we are interested in its resultant
effect on the image. The image plane intersects with the cone
of perturbation and inscribes an ellipse. Intuitively, as we
increase the radius of the circle of perturbation, the area
of the ellipse on the image plane increases and the image
accumulates more light from the background.

In the given construction, we now define the topological
derivative of I at y as,

Dτ (y,Γ) := lim
ϵ→0

I(Γ̂)− I(Γ)

V (ϵ)
. (18)

Note that this is a slightly different notion of the topologi-
cal derivative as compared to the standard form [44] which
introduces vanishing balls Bϵ at the points of perturbation.
Our deviation from this norm is out of necessity. The error
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Evaluated
only at
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Nvdiffrast [22] lr=1× (20 min)

Nvdiffrast [22] lr=10× (1 min)

Topological Derivatives (1 min)

Target

Figure 7. Large steps in visibility optimization. Standard differ-
entiable renderers evaluate visibility gradients only at the silhouette.
Topological derivatives estimate sensitivies with respect to visi-
bility changes on the entire surface. This enables a more robust
way to take large steps in inverse rendering. We compare topo-
logical derivatives (bottom) with visibility gradients (top) from
Nvdiffrast [22] for multi-view reconstruction. (middle) We observe
that silhouette gradients are unstable at higher learning rate (lr).

functionals that we consider for inverse rendering operate
only on the projection of the shape and hence any perturba-
tions of the standard form in the shape’s interior will have
no effect on the error. The term V (ϵ) in the standard form is
the Lebesgue measure of the ball Bϵ, although, in our case,
we choose V (ϵ) = πϵ2 as the area of the planar circle. This
choice will lend us a limit (18) that exists and is finite.

Γ

v = 1

v = 0Similar to the 2D case (§ 4.2), we
define a normal velocity v such that
v = 1 on the newly formed visible con-
tour around the circle of perturbation,
and v = 0 on the unperturbed surface.
Hence, the Gâteaux derivative of the
image functional I(Γ) in the direction v is,

⟨dI(Γ), v⟩Γ =

∫
Γ

dI(Γ)v dσ = 0, (19)

where dI is defined as in (17). Analogous to the case of TDs
in 2D (10), by using asymptotic expansion we can rework
the definition for 3D in (18) as,

Dτ (y,Γ) = lim
ϵ→0

1

V ′(ϵ)
dI(Γ̂)v. (20)

Intuitively, as ϵ → 0, this definition measures the rate of
change in the image of a perturbed shape with respect to
the rate of increase in the area of the circle of perturbation.
Using the shape derivative defined in (17) we can replace the

dI(Γ̂) with,

Dτ (y,Γ) = lim
ϵ→0

1

V ′(ϵ)

∫
Γ̂

[
−∇g · x

x3
z

χ

]
v +[

(g − gB)
x · ∇(n · x)

x3
z

δ(n · x)χ
]
v dσ. (21)

We simplify this integral with two assumptions. First, in the
small neighborhood of y, as ϵ→ 0, the radiance function g
is constant. This eliminates the first term in the integrand as
∇g = 0. Next, we assume constant curvature. This results
in x · ∇(n · x) = κxtx and curvature 2 κ can be taken out
of the integral sign as,

Dτ (y,Γ) = lim
ϵ→0

κ

V ′(ϵ)

∫
Γ̂

(g − gB)
xtx

x3
z

δ(n · x)χvdσ.

(22)

The term δ(n · x)χ constrains the domain for the integral to
the set of apparent contours that are visible from the camera.
The choice of v further restricts this domain to only the circle
of perturbation (which we denote by ∂◦) as by definition,
v = 0 for all other contours:

Dτ (y,Γ) = lim
ϵ→0

κ

V ′(ϵ)

∫
∂◦
(g − gB)

xtx

x3
z

dσ

= (g(y)− gB(y))
κyty

y3
z

. (23)

This is the topological derivative of functional I at a visible
point y on the surface. Unlike the visibility gradients by
Gargallo et al. [12] in (17) and other differentiable render-
ers [17, 22, 24, 41], the topological derivative in (23) can
prompt visibility changes on the entire surface.

Level-Set Evolution We can finally use topological deriva-
tives (23) and shape derivatives (17) together to evolve a
level-set function ϕ using the evolution equation from (2):

∂ϕ

∂t
= −dI(Γ)|∇ϕ| −Dτ (x,Γ)|∇ϕ|. (24)

Although, the shape derivative term (dI(Γ)) is valid only for
primary visibility. We can lift this assumption by replacing
the shape derivatives with gradients from a differentiable
path tracer for triangle meshes [17, 24] as follows [30, 42],

∂ϕ

∂t
= − ∂I

∂x
· n−Dτ (x,Γ)|∇ϕ|. (25)

This replacement enables higher-order shading and visibil-
ity gradients while being practical in terms of availability
of multiple mesh-based differentiable renderers that are 1)
fast [22, 41], 2) have user-friendly APIs [17, 22, 24, 41], and
3) can handle complex light transport effects [17, 24].

2More details on the relevance of κ are in the Supplementary.
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Figure 8. Inverse rendering of geometry with complex topology. Given a set of images, we cover complex shapes from a spherical
initialization. We compare our method that uses topological derivatives to a differentiable renderer [22] that uses visibility gradients defined
on the silhouette. We regularize the gradients from [22] with two recent methods. LSIG [22] uses a triangle mesh representation and can
make topological changes using remeshing [4]. NIE [30] uses the same gradients with a level-set function. These approaches struggle with
prompting visibility changes in the interior and can get stuck in a local minimum. Convergence plots of chamfer distance are on the right.
We also provide PSNR and optimization time for each scene. Our method, as expected, requires a slight time-overhead over NIE to estimate
the TD. We place the recovered shapes in front of two glossy surfaces to highlight the quality of recovery.

Large Steps in Visibility Optimization Unlike the visi-
bility gradients in present differentiable renderers, the topo-
logical derivative from Result 3 is defined for the interior of
the visible shape. For shape recovery from multi-view im-
ages, there is the immediate benefit that, for each point on the
surface, we can obtain visibility sensitivities defined from
several viewing angles. Conversely, with standard shape
derivatives, visibility gradients are defined for points only
when they appear at the silhouette. The resulting optimiza-
tion signal is quite sparse in practice — and in cases with
complex lighting and materials, it is noisy. We find that topo-
logical derivatives provide a more robust signal for visibility
changes and enable faster optimization. In Figure 7 we show
a comparison with visibility gradients from nvdiffrast [22]
for inverse shape recovery from multi-view images.

Multi-View Reconstruction We validate the proposed
theory using synthetic 3D shapes of complex topology.
Given a set of images with known material and environment
lighting, we use the level-set evolution in (25) to minimize
reprojection error. We show qualitative and quantitative
results in Figure 8 with nvdiffrast [22]. Since [22] is de-

fined for triangle meshes, we regularize the gradients for
smoother optimization using LSIG [35] and enable topo-
logical changes with NIE [30]. Theoretically, our method
becomes an extension of NIE in the form of an additional
term in the level-set PDE (25) for topological derivatives.
Starting from a genus-0 sphere, we find that shape derivatives
are insufficient to prompt visibility changes in the shape’s in-
terior. The holeball example, which requires puncturing
three axial holes through the sphere, is a prime illustration
of this problem. The regions of hole nucleation are within
the silhouette of the shape and hence other methods require
shading gradients to prompt the visibility changes — which,
as discussed earlier in Figure 5, are unreliable for topology
evolution. We find that by using topological derivatives we
can successfully recover the shown examples as they can
evaluate visibility changes in such regions. We provide more
examples of shape recovery in the Supplementary.

5.2.1 Secondary Visibility

We extend our formulation for TD to a rendering integral
with secondary light bounces. We project a point u on the im-
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Figure 9. Shape ambigram from a single image. We reproduce
the famous shape ambigram from the cover of GEB by Hofstader
(1). Given a single image (7), we aim to recover a shape with
complex shadow projections from a relatively simple shape (2). A
differentiable path tracer like Mitsuba 3 [17] uses a form of shape
derivative and struggles with visibility changes necessary in the
interior regions. We regularize the gradients from [17] using two
recent methods. One which works with triangle meshes [35] (4)
and the other with level-sets [30] (5). Our method uses topological
derivatives for secondary visibility and can successfully recover the
shadows (6). In (3) we visualize the term g − gB at intialization.

age plane to a shading point in the scene by x = π−1(u) (see
the inline figure). We can integrate a scene function over the

Γ
gB

u x′

x

hemispherical domain around this shading
point x and relay the differentials back to u.
We follow a similar construction as in the case
of primary visibility (Result 3) and estimate
TD at a point x′ ∈ Γ acting as an occluder for
the light path u → x → x′. Let g(x′) be the
scene function along this path with the unperturbed surface
and gB(x′) the scene function after the conical perturbation.
The TD of the shading functional around x with respect to a
perturbation at x′ is,

Dτ (x
′,Γ) = (g(x′)− gB(x

′))
κ(x′ − x)t(x′ − x)

(x′ − x)3z
. (26)

We provide the full derivation in the Supplementary. A
surface evolution equation including a TD of this form can
perforate through shapes along the secondary segments of
light paths. To demonstrate the feasibility of this approach
we propose a task of recovering 3D shape ambigrams from a
single image. Inspired by the popular cover of Gödel, Escher,
Bach [15], we construct a scene with an ambigram of letters
G,E and B placed inside a box with shadow projections

of the letters on different planes. As shown in Figure 9,
differentiable path tracers such as Mitsuba 3 [17] cannot
recover this shape with a genus-0 intialization. By adding a
TD term to (25), we can deform the sphere such that more
light can be accumulated in the regions with shadows.

6. Discussion
As shown in the experiments (Figures 4, 8 and 9), topo-

logical derivatives (TDs) can be used to prompt visibility
changes away from shape contours. The form of these
derivatives resemble occupancy and segmentation loss func-
tions [36, 50] that are frequently employed in shape recon-
struction methods. Roughly put, topological derivative can
be interpreted as a soft notion of occupancy loss and can
be used when a segmentation mask of the final geometry is
unavailable.

In comparison to volumetric-rendering based meth-
ods [31] the advantage of using TDs is efficient sampling
and the ability to use more complex materials and light
transport effects. As evident from the synthetic nature of
the experiments, however, there is still a gap between the
reconstruction quality achieved using TDs and volumetric
methods. We anticipate a few significant challenges, that if
resolved could reduce the gap. First, balancing the shape and
topological derivative terms in Eq. 25 for shape evolution in
3D is not straightforward. TDs are not always necessary, es-
pecially when the optimization has reached a point where the
topology of the shape is the same as that of the target. Sec-
ond, the assumption of constant curvature (in Eq. 23) could
lead to unexpected behavior and its effect needs a thorough
inquiry. Third, we do not derive TDs for phase nucleation
in 3D. In 2D, a sample in the pixel space corresponds to a
single sample on the canvas. As a result, the term (g−gB) in
Equation 13 relates to a single point in the shape’s exterior.
For 3D, in empty space, a pixel-sample corresponds to a ray
in the direction of that sample. This makes the problem of
phase nucleation significantly more challenging.

Finally, joint optimization of geometry and other parame-
ters such color, material properties and lighting is not trivial
and poses additional challenges. As a preliminary step, be-
low, we show an experiment with the task of recovering both
geometry and color for 2D vectorization.
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